
CMP1201: COMPUTER PROGRAMMING FUNDAMENTALS

Dr. Andrew Katumba

Lecture 2: C Basics

The Pioneers of UNIX & C

• Dennis Ritchie (UNIX, C programming language)

• Ken Thompson (UNIX)

• Alfred Aho (AWK programming language)

• Brian Kernighan (AWK programming language, many
C and UNIX programming books)

• Lorinda Cherry (many document processing tools)

http://lcorg.blogspot.com/2012/10/the-pioneers-of-unix.html
http://en.wikipedia.org/wiki/Dennis_Ritchie
http://en.wikipedia.org/wiki/Ken_Thompson
http://en.wikipedia.org/wiki/Alfred_Aho
http://en.wikipedia.org/wiki/Brian_Kernighan
http://en.wikipedia.org/wiki/Lorinda_Cherry

3

4

#include <stdio.h>

main(t,_,a)
char *a;
{return!0<t?t<3?main(-79,-13,a+main(-87,1-_,
main(-86, 0, a+1)+a)):1,t<_?main(t+1, _, a):3,main (-94, -27+t, a
)&&t == 2 ?_<13 ?main (2, _+1, "%s %d %d\n"):9:16:t<0?t<-72?main(_,
t,"@n'+,#'/*{}w+/w#cdnr/+,{}r/*de}+,/*{*+,/w{%+,/w#q#n+,/#{l,+,/n{n+\
,/+#n+,/#;#q#n+,/+k#;*+,/'r :'d*'3,}{w+K w'K:'+}e#';dq#'l q#'+d'K#!/\
+k#;q#'r}eKK#}w'r}eKK{nl]'/#;#q#n'){)#}w'){){nl]'/+#n';d}rw' i;#){n\
l]!/n{n#'; r{#w'r nc{nl]'/#{l,+'K {rw' iK{;[{nl]'/w#q#\
n'wk nw' iwk{KK{nl]!/w{%'l##w#' i; :{nl]'/*{q#'ld;r'}{nlwb!/*de}'c \
;;{nl'-{}rw]'/+,}##'*}#nc,',#nw]'/+kd'+e}+;\
#'rdq#w! nr'/ ') }+}{rl#'{n' ')# }'+}##(!!/")
:t<-50?_==*a ?putchar(a[31]):main(-65,_,a+1):main((*a == '/')+t,_,a\
+1):0<t?main (2, 2 , "%s"):*a=='/'||main(0,main(-61,*a, "!ek;dc \
i@bK'(q)-[w]*%n+r3#l,{}:\nuwloca-O;m .vpbks,fxntdCeghiry"),a+1);}

DON’T PANNIC!

http://www.ioccc.org/index.html

5

C is a high-level programming language developed in 1972
by Dennis Ritchie at Bell Labs.

Originally used to write the Unix operating system

- systems programming language

But nowadays used for a wide variety of applications

- industry-standard language

Note: High-level language => “resembles” everyday
English. Instructions are written in a condensed (pseudo)
form of English

6

Basics of a Typical C Program Development Environment

Phases of C Programs:
1. Edit
2. Preprocess
3. Compile
4. Link
5. Load
6. Execute

Program is created in
the editor and stored
on disk.

Preprocessor program
processes the code.

Loader puts program
in memory.

CPU takes each
instruction and
executes it, possibly
storing new data
values as the
program executes.

Compiler creates
object code and
stores it on disk.

Linker links the object
code with the libraries

Loader

Primary Memory

Compiler

Editor

Preprocessor

Linker

Primary Memory

.

.

.

.

.

.

.

.

.

.

.

.

Disk

Disk

Disk

CPU

Disk

Disk

7

Anatomy of a simple C program

#include <stdio.h>

int main(void)

{

 printf("Hello World!\n");

 return (0);

}

#include <stdio.h>
– Preprocessor directive

• Tells computer to load contents of a certain file
• Begins with a # symbol

– <stdio.h> contains standard input/output operations
• Allows C program to perform I/O from keyboard/screen

C program comprises
two parts:

- Preprocessor directives
- Program code

Preprocessor directives give
commands to C preprocessor
which “modifies” C program text
before complilation.

8

int main(void)
{

– C programs contain one or more functions, exactly one of
which must be function main

– Parenthesis () used to indicate a function
– int means that main "returns" an integer value (status code) to

operating system when it terminates.
– void means that the main function receives no data from the

operating system when it starts executing.
– Left brace { indicates start of a block (of code)

• The “bodies” of all functions must be contained in braces -
the body of a function is a block of code

• Here it is the body of the function main

9

printf(“Hello World!\n");
– Instructs computer to perform an action

• Specifically, print the string of characters within quotes (“ ”)
• Makes use of standard I/O function, printf

– Entire line called a statement
• All statements must end with a semicolon (;)

– Escape character (\)
• Indicates that printf should do something out of the ordinary
• \n is the newline character

10

return (0);
}

– A way to exit a function
– return (0) means that the program terminated normally
– Right brace } indicates end of a block (of code)

– Here indicates end of main function has been reached

11

Consider a C program for the miles-to-kilometers problem.

12

Different kinds of statements in a C program

Preprocessor directives

#include <stdio.h>

Include the source code for library file stdio.h. Enables C
compiler to recognize printf and scanf from this library.

#define KMS_PER_MILE 1.609

Defines a constant. The value 1.609 is associated with the
name KMS_PER_MILE everywhere in the program.

Preprocessor substitutes value 1.609 for the name
KMS_PER_MILE wherever it appears in program.

13

As a result, the code statement

kms = KMS_PER_MILE * miles;

would be modified by the preprocessor to become

 kms = 1.609 * miles;

14

15

Function main

• C programs consist of functions one of which must be
main.

• Every C program begins executing at the function main.

16

17

Comments

Statements that clarify the program - ignored by compiler
but "read" by humans.

Comments begin with /* and end with */.

Programmers insert comments to document programs and
improve their readability.

Comments do not cause the computer to perform any
action when the program is run.

/* Get the distance in miles */

double miles; /* distance in miles */

18

Note two types of comments:

- First form appears by itself on a program line.

- Second form appears at end of line following a C
statement.

19

Inside the CPU and Memory

We have talked about what the CPU does:

- Executes instructions one at a time.

A series of instructions is a program

The memory holds the instructions and data for the CPU

Memory is organized as a set of numbered cells

- Each holds one unit of information

20

Everything is Binary!
All of the information in the computer is stored as 1s and 0s:

Integers - whole numbers

Floating-point numbers - fractional numbers

Characters

Strings (of characters)

Pictures

Programs

…

The binary representation for, say, an integer, is totally
different to that of, say, floating-point numbers and
characters. Need to specify what memory cell holds.

21

Variables
If programmers had to do everything in binary … they would
go crazy!

If they had to remember the memory locations of data … they
would go crazy!

Fortunately, the programming language helps us out.

It allows us to declare

- Variables - which are names for places in memory

- Data Types - to specify the kind of data stored in the
variable. Need to be specific.

Unfortunately, programmers still go crazy …

22

Declaration of variables in the program

Variables are names of memory cells that will store
information - input data and results.

E.g.
double miles;

Declares a variable miles:

- miles is the name or identifier of the variable.
- double is the data type of the variable. (This particular

type is for storing a real number. See later!)

Must declare the name and data type of all variables used in
the program.

23

Other example declarations:

int kids, courses;

Declares the variables kids and courses that can store
integer (whole number values).

Note may have more than one variable named in the
declaration statement.

char initial;

Declares the variable initial that can store a single
character.

24

25

Identifiers

There are three categories of identifiers in C:

- reserved words: a word that has a special
meaning in the C language. E.g. main, void, int, …
Reserved words are just that - they cannot be used for

any other purpose. Also called keywords.

- standard identifier: a word that also has a special
meaning in C. E.g. printf, scanf, …

However, their use can be re-defined - but it is not
recommended.

- user-defined identifier: a word used by the
programmer to name program constants and variables.

26

27

User-defined identifiers

Rules:

- identifier must consist only of letters, digits and
underscores. Must not begin with a digit.

- limit length of identifier to maximum of 31 symbols.

- do not use a C reserved word as an identifier.

28

The C compiler is case-sensitive, i.e. it differentiates between
uppercase and lowercase letters.

Thus, the identifiers

rate
Rate
RATE

are considered to be different identifiers.

Be careful! But adopt a consistent style.

Note: that all C reserved words and names of standard
library functions are in lowercase only.

29

One common practice is

- to use uppercase for CONSTANTS

- to use lowercase for all other identifiers.

30

Program Style Hints

A program that “looks good” is easier to read, understand and
debug.

1. Always choose meaningful identifier names.

E.g. identifier miles is better than m

2. If identifier consists of two or more words, separate words by
an underscore, _.
E.g. KMS_PER_MILE is better than KMSPERMILE

3. Avoid excessively long names - avoid typing errors.
E.g. KMS_PER_MILE is better than

KILOMETERS_PER_MILE

31

4. Do not use names that are similar to each - the compiler
does not know that you may have mistyped one name for
another.

In particular, avoid names that differ only in the use of
lower case and uppercase, or differ by the presence or
absence of an underscore.

E.g. Large and large, x_coord and xcoord

32

• All variables in a C program must be declared before they
can be used in the program.

• Every variable stored in the computer's memory has a
name, a value and a type.

• A variable name in C is any valid identifier. An identifier is
a series of characters consisting of letters, digits and
underscores (_). Identifiers cannot start with a digit.
Identifiers can be any length; however, only the first 31
characters are significant.

• C is case sensitive

Summary

33

Variable Declarations and Data Types

A data type specifies a set of values and a set of operations
on those values.

The (data) type of every program variable must be specified in
the declaration statement.

Types tell the CPU how to interpret the 0s and
1s in the memory cell where any given variable is stored.

Example: the integer 1086324736 is stored as
01000000110000000000000000000000

If we read it as a floating point number we get 6.0!

Types help the computer and the programmer keep things
straight

34

Basic Data Types

int - integer numbers - whole numbers in the range:
-32767 -- 32767

char - single character - character must be enclosed by
single quotes within the program.

double - numbers with fractional parts - real numbers.
In program, write with decimal point, e.g. 123.0 or scientific
notation, e.g. 1.23e2 or 1.23E2

We will see more types later.

35

Declaring Variables

int months;
Can hold integer data, like 6, 12, -17

double pi;
Can hold floating-point representations of numbers, like
3.14159, 2.71828

char initial;
Can hold a single character, like ‘i’, ‘K’, ‘@’

Note that a declaration is terminated with a semi-colon, ;.

36

Executable Statements

Executable statements follow the data declarations in a
function.

They are the C program statements used to write or code
the algorithm.

C compiler translates these statements to machine code.

Then the computer executes these when we run the
program.

37

Assignment statements

Most common executable statement is the assignment
statement.

Used to assign a value to a variable.

General format:
variable = expression;

The value to be assigned is written on the right hand of the
assignment operator =.

The variable getting the value is on the left hand side.

Note that the statement is terminated by a semi-colon, ;

Computer first evaluates
expression to determine

its value

38

E.g.

kms = 1.609 * miles;

Variable kms is assigned the value of 1.609*miles
(* means multiply in C). The current value of kms is
overwritten by the new value.

Note: the variable miles must be given a value before the
assignment statement. This is true for any assignment
statement involving variables.

Expression may be a single
variable or constant, or some

combination, e.g. an arithmetic
expression

39

The = sign is rather odd.

In maths, the = means two things are equal

The developers of C were cruel, wicked fiends, who just
wanted to confuse poor students.

In C, the = sign means “takes the value of”.

It is the assignment operator:

x = y; means “x takes the value of y”

Or, “x is assigned the value of y”

40

sum = x + y;

sum takes the value of x + y.

kids = kids + 1;

kids gets the value of the "current value of kids" + 1. If
kids was 5, its new value will be 6 (strange, but true!)

hypotenuse = sqrt(side1 * side1 +
 side2 * side2);

(sqrt is a C function for calculating square roots.)

Assignment statements can be quite complex!

41

Notice that

x + y = sum;

is invalid. Why?

42

43

Initializing Variables

Initialization means giving something a value for the first time.

Any way which changes the value of a variable is a potential
way of initializing it:

– assign an initial value in a declaration:
E.g.

int i = 7;
– assign a value by an assignment statement:
E.g.

count = 0;
- assign a value by reading
E.g.

scanf("%lf", &miles);

44

45

Summary

An assignment statement puts a value into a variable

The assignment may specify a simple value, or an
expression

Remember = means “takes the value of”

The computer always evaluates what is on the right of the =
and stores it in the variable on the left

46

Review Quiz

Find the assignments, declarations, and initializations:

int main (void) {
 double income; /* ??? */
 income = 35500.00; /* ??? */
 printf(“Old income is %f”, income);

 income = 39000.00; /* ??? */
 printf(“After raise: %f”, income);
}

47

Arithmetic expressions

To solve most programming problems, need to write
arithmetic expressions that manipulate numeric type
data.

Expressions may be combinations of numeric constants (E.g.
105), program constants (E.g. KMS_PER_MILE) and/or
program variables (E.g. miles), together with
arithmetic operators

Arithmetic operators are

+, -, *, /

48

+ Addition 5+9=14
- Subtraction 5.2 - 3.1 = 2.1
* Multiplication 5.2 * 2 = 10.4
/ Division 5.0 / 2.0 = 2.5

5 / 2 = 2
% Remainder 7 % 6 = 1

Arithmetic operators

Relationship between the operators / and % for an integer
dividend of m and integer divisor of n:

m equals (m/n)*n + (m%n)
Example:

11 equals (11/2)*2 + (11%2)
 equals 5 *2 + 1

49

Data type of an Expression

Data type of each variable must be specified in its
declaration.
Data type of an expression depends on the type of its
operands.

var1 arithmetic_operator var2

is of type int if both var1 and var2 are of type int;
otherwise, it is of type double

50

Mixed-Type Assignment Statement

An expression that has operands of both type int and
double is a mixed-type expression

a = b + c * (b – d)
 Double = int and /or double
 int = int and/or double but only

the integral part is saved into a

The expression is first evaluated; then the results is
assigned to the variable listed to the left of the assignment
operator (=).

51

Rules for evaluating multiple operators

○Parenthesis rule
○Operator precedence rule

■Unary ++, - - , +, -
■Binary +, -, *, /, %

○Associativity rule
■Unary operators at the same precedence level – right to left
evaluation (right associativity)

■Binary operators at the same precedence level – left to right
evaluation (left associativity)

■Z-(a+b+b/2)+w*-y
■In complicated expressions use extra parentheses

52

Writing mathematical formulas

●Always specify multiplication explicitly by using the
operator * where needed

●Use parenthesis when required to control the order of
operator evaluation

●Two arithmetic operators can be written in succession if
the second is a unary operator

 53

I/O Operations and Library Functions
Need to get data into program from keyboard and display
information (including results) on screen.

The library functions scanf and printf do this for us.

- printf is used for output to the screen

- scanf is used for input from the keyboard
E.g.

printf("Enter distance in miles> ");
- write some text

scanf("%lf", &miles);
- read a value for variable miles

printf("That equals %f kms.\n", kms);
- write some text and value of miles

 54

Each call to printf and scanf begins with a format string in
double quotes “…”.
I.e.

printf(format string);
printf(format string, print list);
scanf(format string, input list);

The format string specifies the format for the input or output.

 55

After the format string comes

- an input list (for scanf)
- a print list (for printf). Optional.

The variables named in the input list must be preceded by an
‘&’ (e.g. &miles).

 56

The format strings contain multiple placeholders, one for
each variable in the list.

Placeholders indicate the data type and position of a
variable in a format string.

Use:

%lf in scanf for type double value
%f in printf for type double value
%d in printf and scanf for type int value
%c in printf and scanf for type char value

 57

printf("That equals %f kms.\n", kms);

 Placeholder Variable

Format string

E.g.

When this statement is executed, the current value of kms is
printed at the place indicated by the placeholder in the
format string.

kms is a double data type, so placeholder is %f

If kms has the value 25, say, then the what is printed is

That equals 25 kms

 58

 59

 60

Examples

1. Display a prompt(ing) message that tells program user
what to enter.
E.g.

printf("Enter distance in miles> ");
scanf("%lf", &miles);

What the user sees is

Enter distance in miles>

The program user then can type in the data value requested
which is processed by the scanf function.

 61

2. Displaying blank lines

The two-character sequence, \n, produces "newline" on
output - equivalent to typing Enter.

E.g.

printf(“\n”);

E.g.

 printf("That equals %f kms.\n", kms);

Prints a newline after the message

 62

3. Printing two or more variables

printf might have more than one expression in its list.

E.g.

int multiplier = 2;
double number, double_number;
number = 3.14;
double_number = multiplier * number;
printf(" %d times %f is %f. \n",
 multiplier , number , double_number);

Output: 2 times 3.14000 is 6.28000

 63

Basic rule: placeholders in format string must match
expressions in output list in number, order, and
type.

 64

4. Inputting a value into a variable

scanf("%lf", &miles);

Placeholder Note! Variable

The real number value typed at the keyboard is
assigned to the variable, miles.

Do NOT forget the &

 65

5. Reading two or more data items with scanf

E.g.
printf(“Enter hours and rate>”);
scanf(“%lf%lf”, &hours, &rate);

First number stored in hours, second in rate. Should be at
least one space between numbers. Don’t forget &s!

E.g
char first, second;

printf(“Enter your two initials>”);
scanf(“%c%c”, &first, &second);

 66

Basic rule: placeholders in the format must match
variables in the input list.

Must match one-for-one in number, order,
and type.

int studentID ;
double grade ;
scanf ("%d %lf", &studentID , &grade) ;

Be aware that advanced formatting options exist
and can be looked up when needed.

 67

Formatting Numbers in Program Output

Field width – the number of columns used to display a value

Formatting values of type int

Placeholder format is: %nd, right justified

E.g.  

printf (“Results: %3d meters = %4d ft. %2d in.\n”,meters, feet, inches);

Results:
 ▄ ▄ 21 ▄ meters ▄ = ▄ ▄ ▄ 68 ▄ ft. ▄ 11 ▄ in.

(▄ - represents blank character)

 68

Formatting Values of type double

Placeholder format is: %n.m

n – total field width (incl. decimal point and minus sign)
m – desired number of decimal places

See Table 2.11 and 2.12, Section 2.6

 69

Interactive mode, batch mode and data files

▪ Interactive mode: The user interacts with the
program – types in data while it is running.

▪ Batch mode: the program scans the data it needs
from a previously prepared file

● input redirection: program <input_file
● output redirection: program >output_file
● program <input_file >output_file
● input and output controlled by the program

 70

Batch Version of Miles-to-Kilometers Conversion Program (page 77)

/* Converts distances from miles to kilometers. */
#include <stdio.h> /* printf, scanf definitions */
#define KMS_PER_MILE 1.609 /* conversion constant */
int main(void)
{

double miles, /* distance in miles */
 kms; /* equivalent distance in kilometers */
/* Get and echo the distance in miles. */
scanf("%lf", &miles);
printf("The distance in miles is %.2f.\n", miles);
/* Convert the distance to kilometers. */
kms = KMS_PER_MILE * miles;
/* Display the distance in kilometers. */
printf("That equals %.2f kilometers.\n", kms);
return (0);

}
The command line for running this program (metric) is:

metric < mydata
The file mydata contains input data (112.00) Output

The distance in miles is 112.00.
That equals 180.21 kilometers.

Redirection of the input

 71

Common Programming errors

▪ Syntax Errors
● Caused by violation of grammar rules of C

▪ Run-Time Errors
● Displayed during execution

● Division by 0

▪ Undetected errors
● Usually lead to incorrect results

▪ Logical errors
● Caused by following an incorrect algorithm
● Difficult to detect

•
72

Compiler Listing of a Program with Syntax Errors
221 /* Converts distances from miles to kilometers. */

222

223 #include <stdio.h>

266 #define KMS_PER_MILE 1.609

267

268 int

269 main(void)

270 {

271 double kms

272

273 /* Get the distance in miles. */

274 printf ("Enter the distance in miles> ");

***** Semicolon added at the end of the previous
source line

275 scanf ("%lf", &miles);

***** Identifier "miles" is not declared within this
scope

***** Invalid operand of address-of operator

276

277 /* Convert the distance to kilometers. */

278 kms = KMS_PER_MILE * miles;

***** Identifier "miles" is not declared within this scope

279

280 /* Display the distance in kilometers. * /

281 printf ("That equals %f kilometers.\n", kms);

282

283 return (0);

284 }

***** Unexpected end-of-file encountered in a comment

***** "}" inserted before end-of-file

 73

A Program with a Run-time Error

111 #include <stdio.h>
262
263 int main (void)
264 {
266 int first, second;
267 double temp, ans;
268
269 printf ("Enter two integers> ");
270 scanf ("%d%d", &first, &second);
271 temp = second / first; /* temp = 3/14 = 0 */
272 ans = first / temp;
273 printf ("The result is %.3f\n", ans);
274
275 return (0);
276 }

Enter two integers> 14 3
Arithmetic fault, divide by zero at line 272 of routine main

 74

A Program That Produces Incorrect Results Due to & Omission

#include <stdio.h>
int main(void)
{
 int first, second, sum;

 printf ("Enter two integers> ");
 scanf ("%d%d", first, second); /* ERROR! Should be &first, &second */

 sum = first + second;

 printf ("%d + %d = %d\n", first, second, sum);

 return (0);
}

Enter two integers> 14 3
5971289 + 5971297 = 11942586

 75

Summary

▪ Every C program has preprocessor directives and a
main function

▪ Variable names must begin with a letter and consist
of letters, digits and underscore symbol. A reserved
word cannot be used as an identifier

▪ The data type of each variable must be declared.
Three standard data types are int, double and char.

▪ Assignment statements are used to perform
computations and store results in memory.

▪ Function calls are used to get data (functions scanf
and fscanf) and to display values stored in memory
(functions printf and fprintf)

Reading for Lecture:

PSC: Chapter 2

CPL: Chapter 2

Write code

76

